- Home
- /
- Dunia Mahasiswa
- /
- Kenalan dengan Operasi Himpunan Yuk, Ini Dia Jenis...
Kenalan dengan Operasi Himpunan Yuk, Ini Dia Jenis dan Contohnya
Maukuliah.id- Hayo siapa di sini yang belum kenal dengan bab operasi himpunan? Kalau kamu belajar matematika, pasti kamu akan menemui sub bab yang satu ini. Bisa dibilang sub bab yang satu ini kerap dipakai sampai tes untuk kerja lho.
Sebenarnya, apa sih operasi himpunan itu? Jadi guys, operasi himpunan merupakan kumpulan objek atau benda yang kemudian dapat didefinisikan dengan jelas. Ketika dioperasikan nanti, himpunan ini akan menghasilkan himpunan baru.
Lalu, apa saja sih jenis dan contoh dari operasi himpunan ini? Langsung yuk simak ulasan di bawah ini.
Baca juga: Syarat Lulus Kuliah, Mendikbudristek: Tidak Wajib Membuat Skripsi
Jenis dan Contoh Operasi Himpunan
1. Gabungan dua himpunan
Apakah kamu sering menjumpai gabungan dua himpunan? Gabungan dua himpunan merupakan gabungan dari dua himpunan yang terdiri dari semua anggota himpunan A dan himpunan B. Di mana anggotanya yang sama hanya ditulis satu kali.
Misalnya: A gabungan B ditulis A ∪ B = {x|x ϵ A atau x ϵ B}
A = {1, 2, 3, 4, 5} B = {2, 4, 6, 8, 10} A ∪ B = {1, 2, 3, 4, 5, 6, 8, 10}
2. Irisan dua himpunan
Jenis yang kedua ini adalah irisan dua himpunan A dan B yang sama.
Misalnya:
A = {a, b, c, d, e} dan B = {a, c, e, g, i}
Kedua himpunan tersebut ada tiga anggota yang sama, yaitu a, c, dan e. Jadi, irisan himpunan A dan B adalah a, c, dan e atau ditulis dengan: A ∩ B = {a, c, e} A ∩ B dibaca himpunan A irisan himpunan B.
3. Selisih dua himpunan
Kalau selisih dua himpunan itu seperti apa sih? Selisih himpunan A dan B adalah himpunan dari semua anggota himpunan A tetapi tidak dimiliki oleh himpunan B.
Misalnya:
A selisih B ditulis A-B = {x|x ϵ A atau x Ï B} Contoh: A = {a, b, c, d, e} B = {a, c, e, g, i} A-B = {b, d}
4. Komplemen
Komplemen A merupakan himpunan semua elemen dari S yang tidak ada di himpunan S.
Komplemen A ditulis A1 atau Ac = {x|x ϵ S atau x Ï A}
Misalnya:
A= {1, 3, …, 9}
S = {bilangan ganjil kurang dari 20}
Ac = {11, 13, 15, 17, 19}
Baca juga:
Contoh soal operasi himpunan
Jika diketahui A = {a, b, c, d, e} B = {a, c, e, g, i} C = {b, c, e, f, g}
Tentukanlah:
- A ∩ B
- A ∩ C
- B ∪ C
- A ∪ B ∪ C
Jawab:
- A ∩ B = {a, c, e}
- A ∩ C = {b, c, e}
- B ∪ C = {a, b, c, e, f, g, i}
- A ∪ B ∪ C = {a, b, c, d, e, f, g, i}
Nah, itu tadi penyelesaian soal dan juga contoh dari operasi himpunan. Sekarang sudah paham kan?
Gambar: Pexels.com